8,590 research outputs found

    Galactic Escape Speeds in Mirror and Cold Dark Matter Models

    Full text link
    The mirror dark matter (MDM) model of Berezhiani et al. has been shown to reproduce observed galactic rotational curves for a variety of spiral galaxies, and has been presented as an alternative to cold dark matter (CDM) models. We investigate possible additional tests involving the properties of stellar orbits, which may be used to discriminate between the two models. We demonstrate that in MDM and CDM models fitted equally well to a galactic rotational curve, one generally expects predictable differences in escape speeds from the disc. The recent radial velocity (RAVE) survey of the Milky Way has pinned down the escape speed from the solar neighbourhood to vesc=54446+64v_{esc}=544^{+64}_{-46} km s1^{-1}, placing an additional constraint on dark matter models. We have constructed an MDM model for the Milky Way based on its rotational curve, and find an escape speed that is just consistent with the observed value given the current errors, which lends credence to the viability of the MDM model. The Gaia-ESO spectroscopic survey is expected to lead to an even more precise estimate of the escape speed that will further constrain dark matter models. However, the largest differences in stellar escape speeds between both models are predicted for dark matter dominated dwarf galaxies such as DDO 154, and kinematical studies of such galaxies could prove key in establishing, or abolishing, the validity of the MDM model.Comment: Accepted for publication in the European Physical Journal

    Geometric creation of quantum vorticity

    Get PDF
    We consider superfluidity and quantum vorticity in rotating spacetimes. The system is described by a complex scalar satisfying a nonlinear Klein-Gordon equation. Rotation terms are identified and found to lead to the transfer of angular momentum of the spacetime to the scalar field. The scalar field responds by rotating, physically behaving as a superfluid, through the creation of quantized vortices. We demonstrate the vortex nucleation through numerical simulation.Comment: 10 pages, 1 figure, updated to closely resemble published versio

    Self-similarity in the conformal framework of quiescent cosmology and the Weyl curvature hypothesis

    Get PDF
    A viable alternative to cosmological inflation is provided by the combined theory of quiescent cosmology and the Weyl curvature hypothesis. We augment the conformal framework of this theory by incorporating the spacetime property of self-similarity. A generalisation of the conformal Killing equation is developed as a definition of asymptotic self-similarity for use in the framework; we derive several propositions and theorems that facilitate the application of this definition, and demonstrate asymptotic self-similarity for FLRW and other models. We also detail the conditions under which self-similarity is preserved by conformal transformations, and investigate its relationship to other symmetry properties in the framework

    Charmless Two-body Baryonic B Decays

    Full text link
    We study charmless two-body baryonic B decays in a diagramatic approach. Relations on decay amplitudes are obtained. In general there are more than one tree and more than one penguin amplitudes. The number of independent amplitudes can be reduced in the large m_B limit. It leads to more predictive results. Some prominent modes for experimental searches are pointed out.Comment: 15 pages, 2 figures. To appear in Phys. Rev.
    corecore